حلسه ۱۰:

تفصیه مقدماتی

درس: مهندسی تصفیه آب و فاضلاب

دکتر علی رضا بازارگان info@environ.ir

Preliminary treatment

- •بسیار بعید است که منبع آب آن قدر تمیز باشد که فقط با یک گندزدایی ساده بتوان آن را آماده استفاده کرد و معمولا چندین عملیات واحد برای تصفیه آن نیاز است
- •به عملیات واحدهایی که در اکثر تصفیه خانه ها به چشم می خورند و قبل از هر کاری (حتی قبل از ضدعفونی کردن) مورد استفاده قرار می گیرند تصفیه مقدماتی گفته می شود
- •ثابت سازی جریان equalization معمولا بعد از تصفیه مقدماتی صورت میگیرد به این دلیل به می خواهیم آب باکیفیت تر را ذخیره کنیم

Dr. Alireza Bazargan info@environ.ir

عملیات مقدماتی

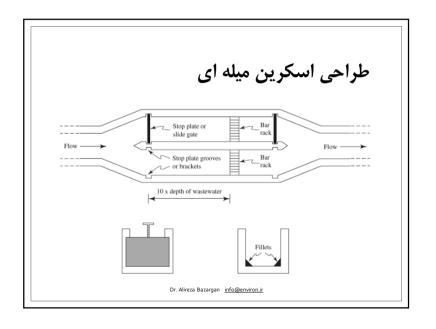
- •ایستگاه پمپاژ
- •باید از عمق زمین بالا کشیده شود
- •به ارتفاعی برده شود که بقیه تصفیه خانه گرانشی عمل کند
 - •تصفیه مقدماتی
 - •حذف جامدات تصفيه ناپذير
 - •آماده سازی فاضلاب به منظور افزایش راندمان واحدهای پایین دستی و حفاظت از آن ها

Dr. Alireza Bazargan info@environ.ir

اسکرین میله ای Course Screen / Bar Screen

Dr. Alireza Bazargan info@environ.ir

1


پویانمایی اسکرین میله ای Video clip inserted Dr. Alireza Bazargan info@environ.ir

طراحی اسکرین میله ای

- •برای سرویس کردن، هر اسکرین را باید بتوان ایزوله کرد
- •باید تعداد اسکرین ها به گونه ای باشد که در اوج جریان، یک standby
- •بهترین سرعت برای ورود آب به اسکرین ها مابین 0.4m/s و O.9m/s است (حد پایین برای جلوگیری از ته نشینی در کانال، و حد بالا برای جلوگیری عبور ذرات از اسکرین)
- •برای تنظیم جریان و سرعت باید کانال مناسب طراحی شود
 - •می توان از معادله منینگ استفاده نمود

Dr. Alireza Bazargan info@environ.ir

Racks / Screens Nomenclature of racks and screens Typical opening Typical use Trash racks 40-150 mm To prevent logs, stumps, and large heavy debris from sewers ahead of pumping units. In WWTPs, frequently followed by coarse screens Bar racks or coarse screens 6-75 mm To remove large solids, rags, and debris. Typically used Fine screens 1.5-6 mm To remove small solids. Typically follows a coarse screen. Very fine screens 0.25-1.5 mm To reduce suspended solids to near primary treatment level. Typically follow a coarse screen and/or fine screen. May be used when downstream processes do not include primary treatment. 1μm-0.3 mm Used in conjunction with very fine screens for effluent Microscreens polishing. Dr. Alireza Bazargan info@environ.ir

اسكرين ظريف

- •انواع مختلفی دارد
- •بعد از اسکرین میله ای قرار میگیرد تا ذرات کوچک تر را بگیرد
- •سرعت خطی آب قبل از اسکرین ظریف میبایست حتما بین 0.3-1.4m/s و ترجیحا بین 0.6-1.2m/s باشد
- •از آن رو که سرعت خطی بیشتر از اسکرین میله ای است، شاید لازم باشد ابعاد کانال تغییر کند
 - •به مراتب بیش از اسکرین میله ای جرم می گیرد

Dr. Alireza Bazargan info@environ.ir

Dr. Alireza Bazargan <u>info@environ.ir</u>

نمونه اسكرين

Video clip inserted

Dr. Alireza Bazargan info@environ.ir

نمونه اسكرين

Video clip inserted

Dr. Alireza Bazargan info@environ.ir

تخمين افت هد

$$H_L = \left(\frac{1}{2g}\right) \left(\frac{Q}{CA}\right)^{1/2}$$

 H_L = headloss, m

 $Q = \text{flow rate through the screen, m}^3/\text{s}$

 $g = \text{acceleration due to gravity} = 9.81 \text{ m/s}^2$

C = coefficient of discharge for the screen

 $A = \text{effective open area of submerged screen, m}^2$

•برای یک اسکرین تمیز، می توان به عنوان تخمین C=0.6 استفاده نمود

Dr. Alireza Bazargan info@environ.ir

Advantages		Disac	Disadvantages			
Minimal scre	enings		Channel must be widened at screen; perforation prone to clogging with grease			
Multiple clea	ning elements					
Minimal screenings carryover			Perforation prone to clogging with grease			
Low headlos	s					
Handles grease			High headloss; shallow or wide channel			
			required			
mm	efficiency	capacity	suitability	FOG ^b suitability		
1–10	High	Good	Suitable	Poor		
2-15	Low	Very good	Suitable	Suitable		
0.2-6	High	Very good	Not suitable	Poor		
1-6	Medium	Good	Suitable	Suitable		
	carryover Multiple clea Minimal scre Low headlos Handles grea s to consider in a Typical range of openings, mm 1–10 2–15	Multiple cleaning elements Minimal screenings carryo Low headloss Handles grease s to consider in selecting a fit Typical range of openings, mm Capture ^a efficiency 1–10 High 2–15 Low	carryover performultiple cleaning elements Mot a Minimal screenings carryover Low headloss Handles grease High requisits to consider in selecting a fine screen Typical range of openings, mm Capture efficiency capacity 1–10 High Good 2–15 Low Very good	Carryover Multiple cleaning elements Minimal screenings carryover Low headloss Handles grease High headloss; shallow required **Sto consider in selecting a fine screen Typical range of openings, mm efficiency capacity Suitable 1–10 High Good Suitable 2–15 Low Very good Suitable		

Example

- •Design a coarse screen system for a water treatment plant. Use two smooth concrete channels, one on duty and one on stand by.
- •The flow of water is 37,000 m³/day on average. Leave some space on top of the water, in case there is a surge.
- •The water flows due to gravity, with a channel slope of $0.0002\,\mathrm{m/m}$
- •(Use the Microsoft Excel "Solver" tool)

Dr. Alireza Bazargan info@environ.ir

1

Answer

- •The value of n in the manning equation is reported in the tables. n = 0.013
- •Also we know that:

$$Q = \frac{37,000 \text{ m}^3/\text{d}}{86,400 \text{ s/d}} = 0.4282 \text{ m}^3/\text{s}$$

•We need to make some assumptions; so we will try a channel width of 1.1 m

Dr. Alireza Bazargan info@environ.ir

Answer

- •So, our first guess for the cross section of the channel becomes: $0.65 \times 1.1 = 0.717 \text{ m}^2$
- •Here, we can use the Manning equation to find the velocity of such a channel with the designated slope:

$$v = \frac{1}{n} R^{2/3} S^{1/2}$$

where:
$$R = \frac{(W)(D)}{W + (2D)}$$

•After finding the real velocity that would result from such as channel with such a slope, we need to iterate (change the assumed depth) until the velocity calculated from Q/v becomes the same as the one calculated from Manning

Dr. Alireza Bazargan info@environ.ir

Answer

- •Since we don't want the velocity of the water to be too low or too high in the channel, we'll try to design the system so that it is 0.6 m/s during average flow.
- •If the velocity falls under 0.4 m/s during low water inputs, then sedimentation will occur in the channel and cleaning is required (this is common)
- •With the assumption of 0.6 m/s our first guess for the depth of the water in the channel becomes:

$$A = \frac{Q}{v} = \frac{0.4282 \frac{m^3}{s}}{0.6 \frac{m}{s}} = 0.717 \, m^2 \qquad \rightarrow \qquad D = \frac{A}{w} = \frac{0.717 \, m^2}{1.1 \, m} = 0.65 \, m$$

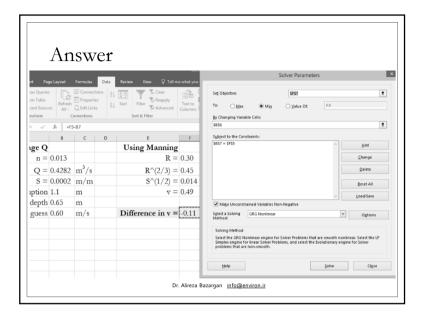
Dr. Alireza Bazargan info@environ.ir

Answer

•Before any iterations:

1	A	В	С	D	E	F	G
1	For average Q				Using Manning		
2	n =	0.013			R =	0.30	
3	Q =	0.4282	m^3/s		$R^{(2/3)} =$	0.45	
4	S =	0.0002	m/m		S^(1/2) =	0.014	
5	Width assumption	1.1	m		v =	0.49	m/s
6	Guess for depth	0.65	m				
7	v based on guess	0.60	m/s		Difference in v =	-0.11	

Dr. Alireza Bazargan info@environ.ir



• After solver optimization:

4	A	В	С	D	E	F	G
1	For average Q				Using Manning		
2	n =	0.013			R =	0.32	
3	Q =	0.4282	m^3/s		$R^{(2/3)} =$	0.47	
4	S =	0.0002	m/m		S^(1/2) =	0.014	
5	Width assumption	1.1	m		v =	0.51	m/s
6	Guess for depth	0.7649	m				
7	v based on guess	0.51	m/s		Difference in v =	0.00	

•We see that under such flow conditions, the velocity is almost at the lower limit, so we must either designate a different width, or accept that the channel needs to be cleaned periodically due to sedimentation in low flow

Dr. Alireza Bazargan info@environ.ir

Homework

- •Solve the previous example at home, by altering the dimensions and slope, in order to obtain a velocity less prone to sedimentation
- •Keep in mind that after you have solved the problem, add about 60 cm to the final channel depth, just in case there is a water surge!

Dr. Alireza Bazargan info@environ.ir